

Evaluating Methods to Automate Hyperparameter
Tuning in Federated Learning

Rachel Phinnemore
Department of Computer Science

University of Toronto
rphinnemore@cs.toronto.edu

Yufei Kang
Department of Electrical Engineering

University of Toronto
yufei.kang@mail.utoronto.ca

Tianyu Wang
 Department of Computer Science

University of Toronto
twang@cs.toronto.edu

Abstract—Edge computing is enabling the development of new
ML frameworks, notably federated learning. However, there are
challenges to optimize federated learning for edge devices due to
the nature of the data on these devices (eg. distributed unequal,
non iid data). In addition to these data challenges, edge computing
devices are also resource constrained relative to the vast
computation resources available on the cloud to train centralized
ML models. In this paper, we investigate and experiment with
ways to improve the model performance of federated learning
specifically for edge computing devices. Specifically, we do this by
marrying the success of FedAvg as the server aggregation
algorithm with a comprehensive analysis of adaptive and non
adaptive client optimizers. Thus, our experimentation directly
addresses the unique constraints of optimizing federated learning
for edge devices including the unique data distribution constraints
as well as the constraints of limited on device training.

I. INTRODUCTION
With forecasts that the number of IoT devices will grow

exponentially this decade [1], edge computing will be
increasingly permeating greater and greater folds of life.
However, it is through empowering edge devices with machine
learning that will enable us to fully leverage their capabilities.
Yet, edge devices pose several unique challenges for machine
learning including the data distribution and computation
resources available locally on the devices. In light of this, a new
type of machine learning has been developed that is particularly
adapted to the configuration and requirements of edge devices,
federated learning. Federated learning is a decentralized form of
machine learning whereby a model is trained locally on a client’s
devices whose model weight results are then aggregated to form
the global model [2]. Federated learning is seen as the ideal
operating system for edge devices as it provides both a learning
protocol for coordination as well as privacy [3]. This is
important because edge devices are increasingly privy to private
information as well as require compliance with stringent privacy
regulations such as GDPR [4]. While federated learning is well
adapted to edge devices, there are several open challenges
regarding how to optimize its performance in light of constraints
such as the limited opportunity for model hyperparameter
tuning.

Hyperparameter tuning is one method of significantly
improving the performance of ML systems [5]. Yet the
opportunity for hyperparameter tuning in federated learning may
be constrained or impossible due to the limited number of
communication rounds [6]. As such, alternative methods must

be deployed to optimize the performance of federated learning
models in lieu of hyperparameter tuning. Specifically, one
method of improving federated learning model performance
without hyperparameter tuning involves using schedulers that
will automatically or adaptively adjust the learning rate
throughout training [6].

In this paper, we present a foundational evaluation of
methods to automate hyperparameter tuning (eg. client or server
learning rates) of federated learning on the CNN model using
the FMNIST and MNIST datasets. We conduct this evaluation
through three experiments that automatically decay or
adaptively adjust the learning rate. Firstly, in Experiment 1, we
implement FedAvg as the server optimizer and a non-adaptive
client optimizer, SGD configured with three methods to
automatically decay the learning rate (eg. StepLR, PlateauLR,
CosineLR). In Experiment 2, we implement FedAvg as the
server optimizer with three adaptive client optimizers (eg.
Adam, Adadelta, Adagrad). Finally, in Experiment 3, we
implement a server learning rate in addition to a client learning
rate. In this experiment, we implement FedAvg as the server
optimizer paired with three methods to automatically decay the
server learning rate with SGD as the client optimizer paired with
plateau LR to decay the client learning rate. To the best of our
knowledge, this paper is the first to evaluate the automation of
learning rate tuning using distinct learning rate decay schedulers
for the client and server learning rates in federated learning, as
conducted in Experiment 3.

II. RELATED WORKS
There are several active lines of research seeking to improve

various aspects of the performance of federated learning for
heterogeneous data found in edge computing. The works that are
most closely related to ours are Felbab [7], McMahan [8], and
Charles [6]. Firstly, our paper was inspired by the work of
Felbab [7] who sought to optimize federated learning through
different client optimizers. Specifically, in their work, they
implement the FedSGD server optimizer with various client
optimizers including SGD, Adam, Adagrad, Nesterov
momentum, and RMSProp for NIID balanced data on the
FMNIST dataset. However, since the work by Felbab [7], a new
server optimizer, FedAvg [8] has gained prominence. Thus, in
Experiment 1 and 2, we adopt a similar approach as Felbab [7]
of experimenting with various client optimizer schemes, while
using the new FedAvg as the server optimizer. FedAvg was
presented by McMahan [8] as a federated learning model that

includes iterative model averaging. It was able to achieve vast
success in reducing the number of communication rounds
required by a factor of 10 - 100x [8]. In the FedAvg
implementation, they use FedAvg as the server optimizer and
SGD as the client optimizer and run experiments on five
different model architectures and four datasets. In terms of
engineering implementation, our work is most closely related to
the work of McMahan [8] as we have built our implementation
on top of their codebase available to the public on Github [9].
However, in the work by McMahan [8] they tie the client and
server learning rate together as noted by Charles [6]. Further,
Charles [6] illustrate that optimizing a model for best
performance requires decoupling the client and server learning
rate. Thus, we differentiate ourselves from McMahan by
exploring the possibility of realizing greater model performance
by implementing a separate client and server learning rate in
Experiment 3. Finally, our work is closely related to the work by
Charles [6] who present a method of automatically tuning the
client and server learning rate through learning rate decay to
mitigate the need to manually tune these hyperparameters.
However, we differentiate our work by exploring additional
ways to automate the client learning rate in Experiment 1 as well
as adaptively adjusting the client learning rate in Experiment 2.
Finally, in the work by Charles [6], they automatically tune the
client and server learning rate using an implementation that
employs SGD as both the client and server optimizer. In
contrast, in Experiment 3, we implement an adaptive client
optimizer paired with FedAvg on the server-side alongside 3
strategies to automatically decay the server learning rate.

III. IMPLEMENTATION

A. Overview of FedAvg

Fig 1: Visualization of FedAvg

In this work, we look into the most popular federated
learning algorithm, Federated Averaging [8] as the server
optimizer. In FedAvg, local data on remote clients are assumed
to be independent and identically distributed. At each
communication round of FedAvg, the central parameter server
first selects a small set of clients and then broadcasts the latest
global model to them. After receiving the latest model, selected
clients perform model training locally on their private datasets
and send the model updates back to the central server later.
Afterward, the central server aggregates all the local updates
from clients by performing averaging and synchronizes the
global model. In this way, FedAvg trains machine learning
models without requiring clients' raw data and therefore offers
privacy protection. Meanwhile, demonstrated by empirical
experiments, models trained by FedAvg achieve good accuracy

comparable to that trained in the central setting when the i.i.d.
assumption is satisfied.

B. Experiment Setup
• Datasets: To compare different schedulers and

optimizers, we train the CNN model with different
schedulers and optimizers on MNIST and FMNIST
dataset. The MNIST dataset contains 70000 examples of
grayscale handwritten digits from 10 classes, the
FMNIST dataset contains 70000 examples grayscale
images of fashion items from 10 classes, both with a
train/test split.

• Models: For MNIST, we train a CNN model with two 5
times 5 convolution layers. The first layer has 10 output
channels and the second has 20, followed by a dropout
layer. Then, two fully connected layers with 50 output
channels and 10 output channels respectively, are
implemented. For FMNIST dataset, we train a CNN
model with two 5 times 5 convolution layers. The first
layer has 16 output channels and the second has 32, with
each followed by a batch norm layer and a max pooling
layer. Then, a fully connected layer with 10 output
channels is implemented. We used both models as per
their implementation by McMahan [8].

• Training: The models are trained for 30 communication
rounds, with 100 clients, each client will perform 10
epochs of local training for each communication round.
We selected 30 communication rounds as this number of
communication rounds was used by Felbab [7] and
worked with our constraint of limited computation
resources. The number of clients used as well as the
number of clients per round was left at the default set by
the work of McMahan [8].

• Data Distribution: The dataset is split across the clients
with NIID distribution but an equal number of samples
as was done in Felbab [7]. Specifically, NIID equal
setting refers to each client having an equal number of
data points of varying distributions (eg. client 1:[4,1,9],
client 2:[2, 8, 7]). Further, the reason for focusing on
equal NIID data is that we are focused on improving the
performance for the consumer edge devices such as
smartphones, and smart home devices which are
expected to have a fairly uniform number of data samples
across devices.

• Hyperparameters: The default server learning rate is
set to 1 as per implementation in Charles [6] and the
default client learning rate is set to 0.01 as per the
implementation in McMahan [8] unless the optimizer has
a default learning rate, other hyperparameters for each
scheduler and optimizers are also set to default.

• Experiment Metrics: In terms of experiment metrics,
we recorded the accuracy and loss at each
communication round to compare the performance of
different methods. We also record run time, although we
do not offer an analysis on runtime due it’s bias from the
specific computer used to run the experiments.

• Experiment Mechanisms: As we were unable to find
prior work implementing either learning schedulers or
multiple adaptive client optimizers for the FedAvg, we
arbitrarily selected the learning rate schedulers and
adaptive optimizers based on their popularity and prior
success in the ML community for Experiment 1 and 2.
For Experiment 3, we choose to use the Plateau LR
learning rate scheduler with the client optimizers given
that it had the best performance overall in Experiment 1
as well as prior experimentation. In Experiment 3, we
also choose to use the Adam optimizer as the adaptive
optimizer due to it’s popularity in the machine learning
community.

C. Experiment 1 – Client Learning Rate Schedulers
Motivation: In the face of scarce communication rounds for

hyperparameter tuning in federated learning, Charles [6]
illustrated a method for automatically decaying the client and
server learning rate together as opposed to tuning the learning
rates to great success. However, the performance of decaying
client and server learning rate as a unit varies on different ML
tasks and data distributions. As such, it is a difficult and delicate
task to find such balance for each ML task and data distribution.
Therefore, we are motivated to separate the client learning rate
adjustment and evaluate how the client learning rate itself
influences the performance of federated learning. In Experiment
1, we simplify this approach by exploring three methods to
automatically tune the client learning rate exclusively through
three schedulers for the SGD local solver in Experiment 1,
namely, StepLR, PlateauLR and CosineLR.

Method: By implementing these schedulers on the client-
side, the local solver is allowed to dynamically reduce the
learning rate based on some validation measurements.

StepLR scheduler: With pre-fixed step size and decay unit,
StepLR allows to decay the learning rate of each parameter
group by a decay unit every step_size epochs.

PlateauLR scheduler: Via monitoring a metrics quantity,
PlateauLR scheduler reduces learning rate when a metric has
stopped improving. Notably, this scheduler would wait for some
extra number of epochs to make sure learning indeed stagnates.

CosineLR scheduler: CosineLR scheduler sets the learning
rate of each parameter group according to cyclical learning rate
policy (CLR). The policy cycles the learning rate between two
boundaries with a constant frequency. Notably, the distance
between the two boundaries can be scaled on a per-iteration or
per-cycle basis.

Results: As can be seen in Table 1, CosineLR optimizer had
the highest accuracy for the MNIST dataset while the PlateauLR
optimizer had the highest accuracy for FMINST. This illustrates
that the client learning rate may need to be selected according to
the dataset and task on hand. Ultimately, the FedAvg + SGD +
Plateau LR result was our most significant result as it was the
only result to outperform the vanilla FedAvg implementation
from Experiment 2, achieving 94.83% accuracy compared to
94.70%. One reason that Plateau LR may have outperformed
vanilla FedAvg is PlateauLR scheduler reduces learning rate
when a metric has stopped improving. In this way, learning rate
decays more cautiously than other schedulers.

TABLE I. EXPERIMENT 1 RESULTS

Dataset
Experiment 1 Results

FL Model Configuration Test
Accuracy Runtime

MNIST FedAvg + SGD + StepLR 88.24% 1035.82s

MNIST FedAvg + SGD + PlateauLR 88.13% 2549.55s

MNIST FedAvg + SGD + CosineLR 92.76% 2831.43s

FMNIST FedAvg + SGD + StepLR 91.85% 2120.20s

FMNIST FedAvg + SGD + PlateauLR 94.83% 5949.94s

FMNIST FedAvg + SGD + CosineLR 84.78% 33652.85

D. Experiment 2 – Adaptive Client Optimizers
Motivation: While SGD has proven successful as a client

optimizer in several implementations, there are promising
developments in the realm of adaptive optimizers as well. One
notable instance is the work by Xie [10] where they present a
novel SGD client optimizer variant modelled on the adaptive
optimizer, Adagrad. However, while they evaluate the
performance of Adagrad relative to the performance of their
proposed Adagrad and find that their solution drastically reduces
communication rounds required for convergence, they fail to
evaluate the performance of existing adaptive client optimizers
relative to non adaptive optimizers such as SGD. Thus, we were
inspired to evaluate how adaptive optimizers paired with
FedAvg previously not evaluated by the research community
such as Adam, Adagrad, Adadelta perform relative to non
adaptive optimizers such as SGD.

Method: As such, we introduce advanced adaptive
optimizers in the local update step to replace the vanilla SGD
optimizer (with learning rate schedulers). With adaptive
optimizers, clients are enabled to train the local models
adaptively based on the learning process rather than following a
manually designed schedule. In this work, we implement three
popular adaptive optimizers which have already shown great
success in the machine learning community.

Adam optimizer: Adaptively estimating the lower-order
moments, Adam optimizer solves the first-order gradient-based
optimization of stochastic objective functions efficiently.
Moreover, this method is also appropriate for non-stationary
objectives and problems with noisy and/or sparse gradients.

Adagrad optimizer: Adagrad is a subgradient method that
dynamically incorporates knowledge of the geometry of the data
observed in earlier iterations and further performs more
informative learning based on that. Metaphorically, the
adaptation helps find needles in haystacks in the form of very
predictive but rarely seen features.

Adadelta optimizer: Adadelta is a per-dimension learning
rate method for gradient descent. In particular, the method
dynamically adapts over time using only first-order information
and has minimal computational overhead beyond vanilla
stochastic gradient descent. Notably, Adadelta requires no
manual tuning of a learning rate and appears robust to noisy
gradient information, different model architecture choices,
various data modalities, and selection of hyperparameters.

Results: As illustrated in Table 2, across both datasets of
Experiment 2, FedAvg + SGD had the best performance.
Additionally, FedAvg had the best overall performance for the
MNIST dataset from all three experiments as well as provided
the second strongest performance on the FMNIST dataset across
all three experiments. This shows the robustness of the FedAvg
+ SGD algorithm. Unfortunately, the FedAvg implementations
with the adaptive optimizers, Adam, Adadelta, and Adagrad did
not achieve competitive accuracy nor run times. One possible
reason for the adaptive optimizer's poor performance is that our
experiments are based on the gradient. We tried to use gradients
to adjust the whole system but this may not be enough. We may
need more information and parameters to properly automatically
tune (eg. past gradients, local data distribution,). We are
adjusting based on current gradient instead of past gradients.
(learning trajectory could be utilized to predict future). Also, the
server has no idea about the local distribution, and clients have
no idea about others’ data distribution. They can only perform
following optimizers W/O schedulers rather than taking
empirical conditions into consideration.

TABLE II. EXPERIMENT 2 RESULTS

Dataset
Experiment 2 Results

FL Model Configuration Test
Accuracy Runtime

MNIST FedAvg + SGD 93.16% 1021.14s

MNIST FedAvg + Adam 86.23% 1103.74s

MNIST FedAvg + Adadelta 87.63% 1119.67s

MNIST FedAvg + Adagrad 78.50% 1068.44s

FMNIST FedAvg + SGD 94.70% 2184.44s

FMNIST FedAvg + Adam 88.53% 2373.64s

FMNIST FedAvg + Adadelta 93.42% 2509.33s

FMNIST FedAvg + Adagrad 39.02% 2339.49s

E. Experiment 3 – Server Learning Rate Schedulers
Motivation: Having conducted an extensive evaluation of

the performance of various client optimizers in Federated
Learning, we proceed to investigate the role of decoupling the
client and server learning rate on model performance. This was
motivated by the work from Charles [6] who found that there is
an opportunity to improve performance through mechanisms
that decouple the global model and local updates, and introduce
the concept of server learning rate. As such, we decouple the
server learning rate using the mechanism outlined below,
implement three different server learning rate decay
mechanisms with the FedAvg server optimizer and evaluate
their performance while using both an adaptive (eg. Adam
optimizer) and non adaptive client optimizer (eg. SGD with the
plateau LR scheduler).

Method: In FedAvg, a vanilla averaging is applied when
computing the new global model. Before introducing our
improvement, we first rewrite the server averaging formula as
below.

Fig 2: Server Aggregation Formula

In this way, we can view the server aggregation step as a
SGD optimization step by considering the delta as a pseudo-
gradient on the server side. Then, similar to what we did before,
we wish to make the server aggregation more efficient by
improving the basic SGD optimization method. Therefore, we
introduce learning rate decay on the server-side, and three global
learning rate schedulers we implemented in this work:

Loss-based scheduler: By monitoring the average loss, the
loss-based scheduler decays the server learning rate by decay
rate when the loss has not decreased for some iterations. In this
way, the variance of loss is used as feedback of the server
scheduler.

Communication round-based scheduler: In this method, a
counter is added to count the number of communication rounds
of the current federated learning task. Based on that number, the
scheduler decays the server learning rate.

Exponential decay scheduler: With pre-fixed maximal and
minimal learning rate as well as decay rate, exponential decay
scheduler divides the server learning rate by the decay rate
gradually until the minimal learning rate is reached.

Results: In Experiment 3, we implement an adaptive client
optimizer, Adam and a non client optimizer, SGD with the
Plateau LR learning rate scheduler with the FedAvg server
optimizer paired with three server learning rate schedulers.
Firstly, the results showed that all configurations with the
adaptive client optimizer, Adam underperformed relative the
configuration with the non adaptive SGD optimizer. This is not
surprising and follows the results of Experiment 2. Secondly, in
terms of the three server learning rate schedulers - decay via loss,
decay via communication round and exponential decay, in each
experiment setting for both datasets, the exponential decay
resulted in the highest performance. Thus, the robustness of the
exponential decay as a server learning rate scheduler is a
significant finding from this experiment. We hypothesize that
the success of the exponential decay server learning rate
scheduler is due to its performance as it approaches the final
training rounds. During the final training rounds, the exponential
decay guarantees that the learning rate will not be decayed to a
small scale number. This enables the optimizer to continue to
learn during these final rounds and thus provides a path to the
best optimization. In contrast, the other learning rate schedulers
will approach a small scale number which can cause the
optimization to plateau (eg. cease learning and improving
performance). Finally, Fig. 3 and Fig. 4 illustrate two unique
strengths of the exponential decay server learning rate scheduler.
Firstly, between communication round 0 to 10, the exponential
scheduler enables rapid loss decay, which is an advantageous
property during early communication rounds. Secondly, these
graphs show how the exponential decay server learning rate
scheduler converges to a lower loss stably during the final
communication rounds while the other learning rate schedulers
show greater variability. This can be seen by comparing the loss
level at communication round 25 and round 30.

TABLE III. EXPERIMENT 3 RESULTS

Dataset
Experiment 3 Results

FL Model Configuration Test
Accuracy Runtime

MNIST
FedAvg + Server LR Decay via
Loss + Adam client optimizer 77.36% 3306.78s

MNIST
FedAvg + Server LR Decay via
Com. Round + Adam client
optimizer

70.64% 2593.13s

MNIST
FedAvg + Server LR Decay
via Exp. Decay + Adam client
optimizer

78.37% 1332.27s

MNIST FedAvg + Server LR Decay via
Loss + SGD + PlateauLR 88.45% 2441.53s

MNIST
FedAvg + Server LR Decay via
Com. Round + SGD +
PlateauLR

89.60% 2458.11s

MNIST
FedAvg + Server LR Decay
via Exp. Decay + SGD +
PlateauLR

92.88% 989.59s

FMNIST FedAvg + Server LR Decay via
Loss + Adam 82.50% 7692.54s

FMNIST FedAvg + Server LR Decay via
Com. Round + Adam 72.34% 9936.82s

FMNIST
FedAvg + Server LR Decay
via Exp. Decay + Adam

88.31% 2326.54s

FMNIST FedAvg + Server LR Decay via
Loss + SGD + PlateauLR 87.32% 40146.45s

FMNIST
FedAvg + Server LR Decay via
Com. Round + SGD +
PlateauLR

93.11% 7991.28s

FMNIST
FedAvg + Server LR Decay
via Exp. Decay + SGD +
PlateauLR

93.27% 2149.755s

Fig 3: Experiment 3 MNIST dataset with 3 server learning rate decay
schedulers + SGD client optimizer + Plateau LR client learning rate scheduler

Fig 4: Experiment 3 FMNIST dataset with 3 server learning rate decay
schedulers + SGD client optimizer + Plateau LR client learning rate scheduler

CONCLUSION
We have provided an extensive evaluation of mechanisms to

automate hyperparameter tuning for a prominent machine
learning paradigm for edge devices, namely, Federated
Learning. In doing so, we have contributed several findings to
the field. Notably, the success of the Plateau LR client learning
rate scheduler on the FMNIST dataset in Experiment 1 which
slightly outperformed the robust “vanilla” FedAvg and SGD
configuration as seen by comparing to results from Experiment
2. In Experiment 2, we find that existing adaptive client
optimizers fail to achieve significant performance. However,
there is a promising approach in adapting the theory of these
optimizers to Federated Learning as shown by Xie [10]. Finally,
in Experiment 3, we implement a server learning rate and
demonstrate the strength of the exponential decay server
learning rate scheduler across both datasets. To conclude, as the
number of edge devices proliferates, it is important to continue
to expand the possibility of richer functionality on these devices
via machine learning.

FUTURE WORKS
 Firstly, while it is important to develop mechanisms to
improve federated learning, a key component is testing these
mechanisms on devices in the wild. Thus, the most critical area
to extend our work is deploying the methods we present and
evaluating them on devices. Beyond this step, it is also important
to test the configurations that we present on NIID unequal data
as our assumption that data on consumer devices will mimic
NIID equal data may not hold. Finally, it is important to explore
client and server learning rate mechanisms beyond those that we
propose, as well as testing the mechanisms we propose on
additional datasets and models to determine generalizability.

REFERENCES
[1] Cisco Visual Networking Index: Global Mobile Data Traffic ...

www.ramonmillan.com/documentos/bibliografia/VisualNetworkingInde
xGlobalMobileDataTrafficForecastUpdate2016_Cisco.pdf.

[2] Jere, Shashank et al. “Federated Learning in Mobile Edge Computing: An
Edge-Learning Perspective for Beyond 5G.” ArXiv abs/2007.08030
(2020): n. pag.

[3] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019.
Federated Machine Learning: Concept and Applications. ACM Trans.
Intell. Syst. Technol. 10, 2, Article 12 (February 2019), 19 pages.
DOI:https://doi-org.myaccess.library.utoronto.ca/10.1145/3298981

[4] Li, Li, et al. “A Review of Applications in Federated Learning.”
Computers & Industrial Engineering, Pergamon, 18 Sept. 2020,
www.sciencedirect.com/science/article/pii/S0360835220305532.

[5] Wu, Jia, et al. “Hyperparameter Optimization for Machine Learning
Models Based on Bayesian Optimization.” Journal of Electronic Science
and Technology, Elsevier, 11 Dec. 2019,
www.sciencedirect.com/science/article/pii/S1674862X19300047.

[6] Charles, Zachary, and Jakub Konečný. “On the Outsized Importance of
Learning Rates in Local Update Methods.” ArXiv.org, 2 July 2020,
arxiv.org/abs/2007.00878.

[7] Felbab, Vukasin, et al. Optimization in Federated Learning. CEUR-WS,
2019, ceur-ws.org/Vol-2473/paper13.pdf.

[8] McMahan, H. B. et al. “Communication-Efficient Learning of Deep
Networks from Decentralized Data.” AISTATS (2017).

[9] RJ, Ashwin. “AshwinRJ/Federated-Learning-PyTorch.” GitHub,
github.com/AshwinRJ/Federated-Learning-PyTorch.

[10] Xie, Cong & Koyejo, Oluwasanmi & Gupta, Indranil & Lin, Haibin.
(2019). Local AdaAlter: Communication-Efficient Stochastic Gradient
Descent with Adaptive Learning Rates.

