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Abstract—Edge computing is enabling the development of new 
ML frameworks, notably federated learning. However, there are 
challenges to optimize federated learning for edge devices due to 
the nature of the data on these devices (eg. distributed unequal, 
non iid data). In addition to these data challenges, edge computing 
devices are also resource constrained relative to the vast 
computation resources available on the cloud to train centralized 
ML models. In this paper, we investigate and experiment with 
ways to improve the model performance of federated learning 
specifically for edge computing devices. Specifically, we do this by 
marrying the success of FedAvg as the server aggregation 
algorithm with a comprehensive analysis of adaptive and non 
adaptive client optimizers. Thus, our experimentation directly 
addresses the unique constraints of optimizing federated learning 
for edge devices including the unique data distribution constraints 
as well as the constraints of limited on device training.  

I. INTRODUCTION  
With forecasts that the number of IoT devices will grow 

exponentially this decade [1], edge computing will be 
increasingly permeating greater and greater folds of life. 
However, it is through empowering edge devices with machine 
learning that will enable us to fully leverage their capabilities. 
Yet, edge devices pose several unique challenges for machine 
learning including the data distribution and computation 
resources available locally on the devices. In light of this, a new 
type of machine learning has been developed that is particularly 
adapted to the configuration and requirements of edge devices, 
federated learning. Federated learning is a decentralized form of 
machine learning whereby a model is trained locally on a client’s 
devices whose model weight results are then aggregated to form 
the global model [2]. Federated learning is seen as the ideal 
operating system for edge devices as it provides both a learning 
protocol for coordination as well as privacy [3]. This is 
important because edge devices are increasingly privy to private 
information as well as require compliance with stringent privacy 
regulations such as GDPR [4]. While federated learning is well 
adapted to edge devices, there are several open challenges 
regarding how to optimize its performance in light of constraints 
such as the limited opportunity for model hyperparameter 
tuning.   

Hyperparameter tuning is one method of significantly 
improving the performance of ML systems [5]. Yet the 
opportunity for hyperparameter tuning in federated learning may 
be constrained or impossible due to the limited number of 
communication rounds [6]. As such, alternative methods must 

be deployed to optimize the performance of federated learning 
models in lieu of hyperparameter tuning. Specifically, one 
method of improving federated learning model performance 
without hyperparameter tuning involves using schedulers that 
will automatically or adaptively adjust the learning rate 
throughout training [6].  

In this paper, we present a foundational evaluation of 
methods to automate hyperparameter tuning (eg. client or server 
learning rates) of federated learning on the CNN model using 
the FMNIST and MNIST datasets. We conduct this evaluation 
through three experiments that automatically decay or 
adaptively adjust the learning rate. Firstly, in Experiment 1, we 
implement FedAvg as the server optimizer and a non-adaptive 
client optimizer, SGD configured with three methods to 
automatically decay the learning rate (eg. StepLR, PlateauLR, 
CosineLR). In Experiment 2, we implement FedAvg as the 
server optimizer with three adaptive client optimizers (eg. 
Adam, Adadelta, Adagrad). Finally, in Experiment 3, we 
implement a server learning rate in addition to a client learning 
rate. In this experiment, we implement FedAvg as the server 
optimizer paired with three methods to automatically decay the 
server learning rate with SGD as the client optimizer paired with 
plateau LR to decay the client learning rate. To the best of our 
knowledge, this paper is the first to evaluate the automation of 
learning rate tuning using distinct learning rate decay schedulers 
for the client and server learning rates in federated learning, as 
conducted in Experiment 3.  

II. RELATED WORKS 
There are several active lines of research seeking to improve 

various aspects of the performance of federated learning for 
heterogeneous data found in edge computing. The works that are 
most closely related to ours are  Felbab [7], McMahan [8], and 
Charles [6].  Firstly, our paper was inspired by the work of 
Felbab [7] who sought to optimize federated learning through 
different client optimizers. Specifically, in their work, they 
implement the FedSGD server optimizer with various client 
optimizers including SGD, Adam, Adagrad, Nesterov 
momentum, and RMSProp for NIID balanced data on the 
FMNIST dataset. However, since the work by Felbab [7], a new 
server optimizer, FedAvg [8] has gained prominence. Thus, in 
Experiment 1 and 2, we adopt a similar approach as Felbab [7] 
of experimenting with various client optimizer schemes, while 
using the new FedAvg as the server optimizer. FedAvg was 
presented by McMahan  [8] as a federated learning model that 



includes iterative model averaging. It was able to achieve vast 
success in reducing the number of communication rounds 
required by a factor of 10 - 100x [8]. In the FedAvg 
implementation, they use FedAvg as the server optimizer and 
SGD as the client optimizer and run experiments on five 
different model architectures and four datasets. In terms of 
engineering implementation, our work is most closely related to 
the work of McMahan [8] as we have built our implementation 
on top of their codebase available to the public on Github [9]. 
However, in the work by McMahan  [8] they tie the client and 
server learning rate together as noted by Charles [6].  Further, 
Charles [6] illustrate that optimizing a model for best 
performance requires decoupling the client and server learning 
rate. Thus, we differentiate ourselves from McMahan by 
exploring the possibility of realizing greater model performance 
by implementing a separate client and server learning rate in 
Experiment 3. Finally, our work is closely related to the work by 
Charles [6] who present a method of automatically tuning the 
client and server learning rate through learning rate decay to 
mitigate the need to manually tune these hyperparameters. 
However, we differentiate our work by exploring additional 
ways to automate the client learning rate in Experiment 1 as well 
as adaptively adjusting the client learning rate in Experiment 2. 
Finally, in the work by Charles [6], they automatically tune the 
client and server learning rate using an implementation that 
employs SGD as both the client and server optimizer. In 
contrast, in Experiment 3, we implement an adaptive client 
optimizer paired with FedAvg on the server-side alongside 3 
strategies to automatically decay the server learning rate.  

III. IMPLEMENTATION 

A. Overview of FedAvg 

 
Fig 1: Visualization of FedAvg 

In this work, we look into the most popular federated 
learning algorithm, Federated Averaging [8] as the server 
optimizer. In FedAvg, local data on remote clients are assumed 
to be independent and identically distributed. At each 
communication round of FedAvg, the central parameter server 
first selects a small set of clients and then broadcasts the latest 
global model to them. After receiving the latest model, selected 
clients perform model training locally on their private datasets 
and send the model updates back to the central server later. 
Afterward, the central server aggregates all the local updates 
from clients by performing averaging and synchronizes the 
global model. In this way, FedAvg trains machine learning 
models without requiring clients' raw data and therefore offers 
privacy protection. Meanwhile, demonstrated by empirical 
experiments, models trained by FedAvg achieve good accuracy 

comparable to that trained in the central setting when the i.i.d. 
assumption is satisfied.  

B. Experiment Setup 
• Datasets: To compare different schedulers and 

optimizers, we train the CNN model with different 
schedulers and optimizers on MNIST and FMNIST 
dataset. The MNIST dataset contains 70000 examples of 
grayscale handwritten digits from 10 classes, the 
FMNIST dataset contains 70000 examples grayscale 
images of fashion items from 10 classes, both with a 
train/test split.  

• Models: For MNIST, we train a CNN model with two 5 
times 5 convolution layers. The first layer has 10 output 
channels and the second has 20, followed by a dropout 
layer. Then, two fully connected layers with 50 output 
channels and 10 output channels respectively, are 
implemented. For FMNIST dataset, we train a CNN 
model with two 5 times 5 convolution layers. The first 
layer has 16 output channels and the second has 32, with 
each followed by a batch norm layer and a max pooling 
layer. Then, a fully connected layer with 10 output 
channels is implemented. We used both models as per 
their implementation by McMahan [8].  

• Training: The models are trained for 30 communication 
rounds, with 100 clients, each client will perform 10 
epochs of local training for each communication round. 
We selected 30 communication rounds as this number of 
communication rounds was used by Felbab  [7] and 
worked with our constraint of limited computation 
resources. The number of clients used as well as the 
number of clients per round was left at the default set by 
the work of McMahan [8]. 

• Data Distribution: The dataset is split across the clients 
with NIID distribution but an equal number of samples 
as was done in Felbab [7]. Specifically, NIID equal 
setting refers to each client having an equal number of 
data points of varying distributions (eg. client 1:[4,1,9], 
client 2:[2, 8, 7]). Further, the reason for focusing on 
equal NIID data is that we are focused on improving the 
performance for the consumer edge devices such as 
smartphones, and smart home devices which are 
expected to have a fairly uniform number of data samples 
across devices.  

• Hyperparameters: The default server learning rate is 
set to 1 as per implementation in Charles [6] and the 
default client learning rate is set to 0.01 as per the 
implementation in McMahan [8] unless the optimizer has 
a default learning rate, other hyperparameters for each 
scheduler and optimizers are also set to default. 

• Experiment Metrics: In terms of experiment metrics, 
we recorded the accuracy and loss at each 
communication round to compare the performance of 
different methods. We also record run time, although we 
do not offer an analysis on runtime due it’s bias from the 
specific computer used to run the experiments. 



• Experiment Mechanisms: As we were unable to find 
prior work implementing either learning schedulers or 
multiple adaptive client optimizers for the FedAvg, we 
arbitrarily selected the learning rate schedulers and 
adaptive optimizers based on their popularity and prior 
success in the ML community for Experiment 1 and 2. 
For Experiment 3, we choose to use the Plateau LR 
learning rate scheduler with the client optimizers given 
that it had the best performance overall in Experiment 1 
as well as prior experimentation. In Experiment 3, we 
also choose to use the Adam optimizer as the adaptive 
optimizer due to it’s popularity in the machine learning 
community.  

C. Experiment 1 – Client Learning Rate Schedulers  
Motivation: In the face of scarce communication rounds for 

hyperparameter tuning in federated learning, Charles [6] 
illustrated a method for automatically decaying the client and 
server learning rate together as opposed to tuning the learning 
rates to great success. However, the performance of decaying 
client and server learning rate as a unit varies on different ML 
tasks and data distributions. As such, it is a difficult and delicate 
task to find such balance for each ML task and data distribution. 
Therefore, we are motivated to separate the client learning rate 
adjustment and evaluate how the client learning rate itself 
influences the performance of federated learning. In Experiment 
1, we simplify this approach by exploring three methods to 
automatically tune the client learning rate exclusively through 
three schedulers for the SGD local solver in Experiment 1, 
namely, StepLR, PlateauLR and CosineLR. 

Method: By implementing these schedulers on the client-
side, the local solver is allowed to dynamically reduce the 
learning rate based on some validation measurements. 

StepLR scheduler: With pre-fixed step size and decay unit, 
StepLR allows to decay the learning rate of each parameter 
group by a decay unit every step_size epochs. 

PlateauLR scheduler: Via monitoring a metrics quantity, 
PlateauLR scheduler reduces learning rate when a metric has 
stopped improving. Notably, this scheduler would wait for some 
extra number of epochs to make sure learning indeed stagnates. 

CosineLR scheduler: CosineLR scheduler sets the learning 
rate of each parameter group according to cyclical learning rate 
policy (CLR). The policy cycles the learning rate between two 
boundaries with a constant frequency. Notably, the distance 
between the two boundaries can be scaled on a per-iteration or 
per-cycle basis. 

Results: As can be seen in Table 1, CosineLR optimizer had 
the highest accuracy for the MNIST dataset while the PlateauLR 
optimizer had the highest accuracy for FMINST. This illustrates 
that the client learning rate may need to be selected according to 
the dataset and task on hand. Ultimately, the FedAvg + SGD + 
Plateau LR result was our most significant result as it was the 
only result to outperform the vanilla FedAvg implementation 
from Experiment 2, achieving 94.83% accuracy compared to 
94.70%. One reason that Plateau LR may have outperformed 
vanilla FedAvg is PlateauLR scheduler reduces learning rate 
when a metric has stopped improving. In this way, learning rate 
decays more cautiously than other schedulers.  

TABLE I.  EXPERIMENT 1 RESULTS 

Dataset 
Experiment 1 Results 

FL Model Configuration Test 
Accuracy Runtime 

MNIST FedAvg + SGD + StepLR 88.24% 1035.82s 

MNIST FedAvg + SGD + PlateauLR 88.13% 2549.55s 

MNIST FedAvg + SGD + CosineLR 92.76% 2831.43s 

FMNIST FedAvg + SGD + StepLR 91.85% 2120.20s 

FMNIST FedAvg + SGD + PlateauLR 94.83% 5949.94s 

FMNIST FedAvg + SGD + CosineLR 84.78% 33652.85 

 

D. Experiment 2 – Adaptive Client Optimizers  
Motivation: While SGD has proven successful as a client 

optimizer in several implementations, there are promising 
developments in the realm of adaptive optimizers as well. One 
notable instance is the work by Xie [10] where they present a 
novel SGD client optimizer variant modelled on the adaptive 
optimizer, Adagrad. However, while they evaluate the 
performance of Adagrad relative to the performance of their 
proposed Adagrad and find that their solution drastically reduces 
communication rounds required for convergence, they fail to 
evaluate the performance of existing adaptive client optimizers 
relative to non adaptive optimizers such as SGD. Thus, we were 
inspired to evaluate how adaptive optimizers paired with 
FedAvg previously not evaluated by the research community 
such as Adam, Adagrad, Adadelta perform relative to non 
adaptive optimizers such as SGD. 

Method: As such, we introduce advanced adaptive 
optimizers in the local update step to replace the vanilla SGD 
optimizer (with learning rate schedulers). With adaptive 
optimizers, clients are enabled to train the local models 
adaptively based on the learning process rather than following a 
manually designed schedule. In this work, we implement three 
popular adaptive optimizers which have already shown great 
success in the machine learning community. 

Adam optimizer: Adaptively estimating the lower-order 
moments, Adam optimizer solves the first-order gradient-based 
optimization of stochastic objective functions efficiently. 
Moreover, this method is also appropriate for non-stationary 
objectives and problems with noisy and/or sparse gradients. 

Adagrad optimizer: Adagrad is a subgradient method that 
dynamically incorporates knowledge of the geometry of the data 
observed in earlier iterations and further performs more 
informative learning based on that. Metaphorically, the 
adaptation helps find needles in haystacks in the form of very 
predictive but rarely seen features.  

Adadelta optimizer: Adadelta is a per-dimension learning 
rate method for gradient descent. In particular, the method 
dynamically adapts over time using only first-order information 
and has minimal computational overhead beyond vanilla 
stochastic gradient descent. Notably, Adadelta requires no 
manual tuning of a learning rate and appears robust to noisy 
gradient information, different model architecture choices, 
various data modalities, and selection of hyperparameters. 



Results: As illustrated in Table 2, across both datasets of 
Experiment 2, FedAvg + SGD had the best performance. 
Additionally, FedAvg had the best overall performance for the 
MNIST dataset from all three experiments as well as provided 
the second strongest performance on the FMNIST dataset across 
all three experiments. This shows the robustness of the FedAvg 
+ SGD algorithm. Unfortunately, the FedAvg implementations 
with the adaptive optimizers, Adam, Adadelta, and Adagrad did 
not achieve competitive accuracy nor run times. One possible 
reason for the adaptive optimizer's poor performance is that our 
experiments are based on the gradient. We tried to use gradients 
to adjust the whole system but this may not be enough. We may 
need more information and parameters to properly automatically 
tune (eg. past gradients, local data distribution,). We are 
adjusting based on current gradient instead of past gradients. 
(learning trajectory could be utilized to predict future). Also, the 
server has no idea about the local distribution, and clients have 
no idea about others’ data distribution. They can only perform 
following optimizers W/O schedulers rather than taking 
empirical conditions into consideration. 

TABLE II.  EXPERIMENT 2 RESULTS 

Dataset 
Experiment 2 Results 

FL Model Configuration Test 
Accuracy Runtime 

MNIST FedAvg + SGD  93.16% 1021.14s 

MNIST FedAvg + Adam 86.23% 1103.74s 

MNIST FedAvg + Adadelta 87.63% 1119.67s 

MNIST FedAvg + Adagrad 78.50% 1068.44s 

FMNIST FedAvg + SGD  94.70% 2184.44s 

FMNIST FedAvg + Adam 88.53% 2373.64s 

FMNIST FedAvg + Adadelta 93.42% 2509.33s 

FMNIST FedAvg + Adagrad 39.02% 2339.49s 

 

E. Experiment 3 – Server Learning Rate Schedulers  
Motivation: Having conducted an extensive evaluation of 

the performance of various client optimizers in Federated 
Learning, we proceed to investigate the role of decoupling the 
client and server learning rate on model performance. This was 
motivated by the work from Charles [6] who found that there is 
an opportunity to improve performance through mechanisms 
that decouple the global model and local updates, and introduce 
the concept of server learning rate. As such, we decouple the 
server learning rate using the mechanism outlined below, 
implement three different server learning rate decay 
mechanisms with the FedAvg server optimizer and evaluate 
their performance while using both an adaptive (eg. Adam 
optimizer) and non adaptive client optimizer (eg. SGD with the 
plateau LR scheduler). 

Method: In FedAvg, a vanilla averaging is applied when 
computing the  new global model. Before introducing our 
improvement, we first rewrite the server averaging formula as 
below. 

 
Fig 2: Server Aggregation Formula 

In this way, we can view the server aggregation step as a 
SGD optimization step by considering the delta as a pseudo-
gradient on the server side. Then, similar to what we did before, 
we wish to make the server aggregation more efficient by 
improving the basic SGD optimization method. Therefore, we 
introduce learning rate decay on the server-side, and three global 
learning rate schedulers we implemented in this work: 

Loss-based scheduler: By monitoring the average loss, the 
loss-based scheduler decays the server learning rate by decay 
rate when the loss has not decreased for some iterations. In this 
way, the variance of loss is used as feedback of the server 
scheduler. 

Communication round-based scheduler: In this method, a 
counter is added to count the number of communication rounds 
of the current federated learning task. Based on that number, the 
scheduler decays the server learning rate.  

Exponential decay scheduler: With pre-fixed maximal and 
minimal learning rate as well as decay rate, exponential decay 
scheduler divides the server learning rate by the decay rate 
gradually until the minimal learning rate is reached. 

Results: In Experiment 3, we implement an adaptive client 
optimizer, Adam and a non client optimizer, SGD with the 
Plateau LR learning rate scheduler with the FedAvg server 
optimizer paired with three server learning rate schedulers. 
Firstly, the results showed that all configurations with the 
adaptive client optimizer, Adam underperformed relative the 
configuration with the non adaptive SGD optimizer. This is not 
surprising and follows the results of Experiment 2. Secondly, in 
terms of the three server learning rate schedulers - decay via loss, 
decay via communication round and exponential decay, in each 
experiment setting for both datasets, the exponential decay 
resulted in the highest performance. Thus, the robustness of the 
exponential decay as a server learning rate scheduler is a 
significant finding from this experiment. We hypothesize that 
the success of the exponential decay server learning rate 
scheduler is due to its performance as it approaches the final 
training rounds. During the final training rounds, the exponential 
decay guarantees that the learning rate will not be decayed to a 
small scale number. This enables the optimizer to continue to 
learn during these final rounds and thus provides a path to the 
best optimization. In contrast, the other learning rate schedulers 
will approach a small scale number which can cause the 
optimization to plateau (eg. cease learning and improving 
performance). Finally, Fig. 3 and Fig. 4 illustrate two unique 
strengths of the exponential decay server learning rate scheduler. 
Firstly, between communication round 0 to 10, the exponential 
scheduler enables rapid loss decay, which is an advantageous 
property during early communication rounds. Secondly, these 
graphs show how the exponential decay server learning rate 
scheduler converges to a lower loss stably during the final 
communication rounds while the other learning rate schedulers 
show greater variability. This can be seen by comparing the loss 
level at communication round 25 and round 30. 



TABLE III.  EXPERIMENT 3 RESULTS 

Dataset 
Experiment 3 Results 

FL Model Configuration Test 
Accuracy Runtime 

MNIST 
FedAvg + Server LR Decay via 
Loss + Adam client optimizer 77.36% 3306.78s 

MNIST 
FedAvg + Server LR Decay via 
Com. Round + Adam client 
optimizer 

70.64% 2593.13s 

MNIST 
FedAvg +  Server LR Decay 
via Exp. Decay + Adam client 
optimizer 

78.37% 1332.27s 

MNIST FedAvg +  Server LR Decay via 
Loss + SGD + PlateauLR  88.45% 2441.53s 

MNIST 
FedAvg +   Server LR Decay via 
Com. Round + SGD + 
PlateauLR  

89.60% 2458.11s 

MNIST 
FedAvg + Server LR Decay 
via Exp. Decay + SGD + 
PlateauLR  

92.88% 989.59s 

FMNIST FedAvg +  Server LR Decay via 
Loss + Adam 82.50% 7692.54s 

FMNIST FedAvg + Server LR Decay via 
Com. Round + Adam 72.34% 9936.82s 

FMNIST 
FedAvg + Server LR Decay 
via Exp. Decay + Adam 

88.31% 2326.54s 

FMNIST FedAvg +  Server LR Decay via 
Loss + SGD + PlateauLR 87.32% 40146.45s 

FMNIST 
FedAvg + Server LR Decay via 
Com. Round + SGD + 
PlateauLR 

93.11% 7991.28s 

FMNIST 
FedAvg + Server LR Decay 
via Exp. Decay + SGD + 
PlateauLR 

93.27% 2149.755s 

 

 
Fig 3: Experiment 3 MNIST dataset with 3 server learning rate decay 
schedulers + SGD client optimizer + Plateau LR client learning rate scheduler 

 
Fig 4: Experiment 3 FMNIST dataset with 3 server learning rate decay 
schedulers + SGD client optimizer + Plateau LR client learning rate scheduler 
 

 

CONCLUSION  
We have provided an extensive evaluation of mechanisms to 

automate hyperparameter tuning for a prominent machine 
learning paradigm for edge devices, namely, Federated 
Learning. In doing so, we have contributed several findings to 
the field. Notably, the success of the Plateau LR client learning 
rate scheduler on the FMNIST dataset in Experiment 1 which 
slightly outperformed the robust “vanilla” FedAvg and SGD 
configuration as seen by comparing to results from Experiment 
2. In Experiment 2, we find that existing adaptive client 
optimizers fail to achieve significant performance. However, 
there is a promising approach in adapting the theory of these 
optimizers to Federated Learning as shown by Xie [10]. Finally, 
in Experiment 3, we implement a server learning rate and 
demonstrate the strength of the exponential decay server 
learning rate scheduler across both datasets. To conclude, as the 
number of edge devices proliferates, it is important to continue 
to expand the possibility of richer functionality on these devices 
via machine learning. 

FUTURE WORKS  
 Firstly, while it is important to develop mechanisms to 
improve federated learning, a key component is testing these 
mechanisms on devices in the wild. Thus, the most critical area 
to extend our work is deploying the methods we present and 
evaluating them on devices. Beyond this step, it is also important 
to test the configurations that we present on NIID unequal data 
as our assumption that data on consumer devices will mimic 
NIID equal data may not hold. Finally, it is important to explore 
client and server learning rate mechanisms beyond those that we 
propose, as well as testing the mechanisms we propose on 
additional datasets and models to determine generalizability.  
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